Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38425054

ABSTRACT

Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.


Subject(s)
Microbiota , One Health , Animals , Humans , Biological Evolution , Soil Microbiology , Plants/microbiology
2.
Cancers (Basel) ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37345117

ABSTRACT

Breast cancer has now become the most commonly diagnosed cancer, accounting for one in eight cancer diagnoses worldwide. Non-invasive diagnostic biomarkers and associated tests are superlative candidates to complement or improve current approaches for screening, early diagnosis, or prognosis of breast cancer. Biomarkers detected from body fluids such as blood (serum/plasma), urine, saliva, nipple aspiration fluid, and tears can detect breast cancer at its early stages in a minimally invasive way. The advancements in high-throughput molecular profiling (omics) technologies have opened an unprecedented opportunity for unbiased biomarker detection. However, the irreproducibility of biomarkers and discrepancies of reported markers have remained a major roadblock to clinical implementation, demanding the investigation of contributing factors and the development of standardised biomarker discovery pipelines. A typical biomarker discovery workflow includes pre-analytical, analytical, and post-analytical phases, from sample collection to model development. Variations introduced during these steps impact the data quality and the reproducibility of the findings. Here, we present a comprehensive review of methodological variations in biomarker discovery studies in breast cancer, with a focus on non-nucleotide biomarkers (i.e., proteins, lipids, and metabolites), highlighting the pre-analytical to post-analytical variables, which may affect the accurate identification of biomarkers from body fluids.

3.
PLoS One ; 18(1): e0280294, 2023.
Article in English | MEDLINE | ID: mdl-36689397

ABSTRACT

Since the introduction of the Bacillus Calmette-Guérin (BCG) vaccine, the genomes of vaccine strains have undergone variations due to repeated passages in different laboratories and vaccine production facilities. Genetic variations have been considered as one of the effective factors in the BCG variable protective efficacy. Consecutive subcultures have been shown to play an essential role in causing genetic variations in several microorganisms, including Mycobacterium bovis BCG. Therefore, the world health organization (WHO) recommendation to limit the passages of master seed lot in the BCG vaccine production should be considered. Besides, the role of other external variables such as quality of the raw ingredients of the culture media, the type of the culture medium and the cultivation methods in the vaccine production has been poorly studied. Here, the effect of passages and culture medium on genetic variations in a BCG seed lot was investigated during a year. The findings of this study revealed a total of 19 variants compared to seed lot while the passages were more than the number recommended by WHO. The first culture of seed lot in the Sauton broth and Middlebrook 7H9 media, and the last subculture in Sauton broth had the least and the most variants, respectively. The observation of the higher number of variants in the last cultures on Sauton broth and Middlebrook 7H9 in comparison to the first and the middle cultures may indicate the effect of passages on the genetic variations in BCG. Additionally, more variants in BCG grown in the Sauton broth do not necessarily represent the greater ability of this medium to cause genetic mutations. For a better conclusion, it is required to examine the medium components as independent variables.


Subject(s)
BCG Vaccine , Mycobacterium bovis , Mycobacterium bovis/genetics , Mutation
4.
Curr Microbiol ; 79(10): 314, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088519

ABSTRACT

Pertussis also known as whooping cough is a respiratory infection in humans particularly with severe symptoms in infants and usually caused by Bordetella pertussis. However, Bordetella parapertussis can also cause a similar clinical syndrome. During 2012 to 2015, from nasal swabs sent from different provinces to the pertussis reference laboratory of Pasture Institute of Iran for pertussis confirmation, seven B. parapertussis isolates were identified by bacterial culture, biochemical tests, and the presence of IS1001 insertion in the genome. The expression of pertactin (Prn) as one the major virulence factor for bacterial adhesion was investigated using western blot. Moreover, the genomic characteristic of one recently collected isolate, IRBP134, from a seven-month infant was investigated using Illumina NextSeq sequencing protocol. The results revealed the genome with G+C content 65% and genome size 4.7 Mbp. A total of 81 single nucleotide polymorphisms and 13 short insertions and deletions were found in the genome compared to the B. parapertussis 12822 as a reference genome showing ongoing evolutionary changes. A phylogeny relationship of IRBP134 was also investigated using global B. parapertussis available genomes.


Subject(s)
Bordetella parapertussis , Whooping Cough , Bordetella parapertussis/genetics , Bordetella pertussis/genetics , Humans , Infant , Iran , Virulence Factors/metabolism , Whooping Cough/diagnosis , Whooping Cough/microbiology
5.
BMC Genomics ; 23(1): 609, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-35987561

ABSTRACT

BACKGROUND: Bacillus Calmette-Guérin (BCG) refers to a group of vaccine strains with unique genetic characteristics. BCG is the only available vaccine for preventing tuberculosis (TB). Genetic and biochemical variations among the BCG vaccine strains have been considered as one of the significant parameters affecting the variable protective efficacy of the vaccine against pulmonary tuberculosis. To track genetic variations, here two vaccine strains (Danish 1331 and Pasteur 1173P2) popularly used according to the BCG World Atlas were subjected to a comparative analysis against the Mycobacterium tuberculosis H37Rv, Mycobacterium bovis AF2122/97, and Mycobacterium tuberculosis variant bovis BCG str. Pasteur 1173P2 reference genomes. Besides, the presence or absence of the experimentally verified human T cell epitopes was examined. RESULTS: Only two variants were identified in BCG Danish 1331 that have not been reported previously in any BCG strains with the complete submitted genome yet. Furthermore, we identified a DU1-like 14,577 bp region in BCG Danish 1331; The duplication which was previously seemed to be exclusive to the BCG Pasteur. We also found that 35% of the T cell epitopes are absent from both strains, and epitope sequences are more conserved than the rest of the genome. CONCLUSIONS: We provided a comprehensive catalog of single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) in BCG Danish 1331 and BCG Pasteur 1173P2. These findings may help determine the effect of genetic variations on the variable protective efficacy of BCG vaccine strains.


Subject(s)
BCG Vaccine , Mycobacterium bovis , Mycobacterium tuberculosis , BCG Vaccine/genetics , Epitopes, T-Lymphocyte/genetics , Genomics , Humans , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/prevention & control , Tuberculosis Vaccines/genetics
6.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613941

ABSTRACT

Cerebral malaria (CM), a fatal complication of Plasmodium infection that affects children, especially under the age of five, in sub-Saharan Africa and adults in South-East Asia, results from incompletely understood pathogenetic mechanisms. Increased release of circulating miRNA, proteins, lipids and extracellular vesicles has been found in CM patients and experimental mouse models. We compared lipid profiles derived from the plasma of CBA mice infected with Plasmodium berghei ANKA (PbA), which causes CM, to those from Plasmodium yoelii (Py), which does not. We previously showed that platelet-free plasma (18k fractions enriched from plasma) contains a high number of extracellular vesicles (EVs). Here, we found that this fraction produced at the time of CM differed dramatically from those of non-CM mice, despite identical levels of parasitaemia. Using high-resolution liquid chromatography-mass spectrometry (LCMS), we identified over 300 lipid species within 12 lipid classes. We identified 45 and 75 lipid species, mostly including glycerolipids and phospholipids, with significantly altered concentrations in PbA-infected mice compared to Py-infected and uninfected mice, respectively. Total lysophosphatidylethanolamine (LPE) levels were significantly lower in PbA infection compared to Py infection and controls. These results suggest that experimental CM could be characterised by specific changes in the lipid composition of the 18k fraction containing circulating EVs and can be considered an appropriate model to study the role of lipids in the pathophysiology of CM.


Subject(s)
Malaria, Cerebral , Plasmodium yoelii , Mice , Animals , Lipidomics , Mice, Inbred CBA , Plasmodium berghei , Lipids , Mice, Inbred C57BL , Brain/pathology
7.
J Appl Microbiol ; 132(3): 2379-2388, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34787956

ABSTRACT

AIMS: Investigate the genetic stability of the BCG vaccine produced in Iran from different batches compared to the reference strain. METHODS AND RESULTS: We comparatively analyzed the whole genome sequences of the vaccine batches from different years. Eleven vials of different batches from 2010, 2018, and 2019 were included. Complete genome analyses revealed no difference between the old (2010) and new (2018 and 2019) vaccine batches. Additionally, minor genetic changes include five single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were observed compared to the BCG Pasteur 1173P2 reference strain, which were shared among all batches. Besides, the batches were identical to the reference strain in terms of antibiotic resistance genes, prophage sequences, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems. CONCLUSIONS: High genetic stability of the BCG vaccine used in the national immunization program was confirmed, which indicates the optimal conditions in the vaccine production process. SIGNIFICANCE AND IMPACT OF THE STUDY: Genetic differences within and between vaccine strains have been declared as one of the main parameters related to the BCG vaccine variable protective efficacy. No study has been done to investigate the genetic variations of the vaccine batches at the single-base level.


Subject(s)
BCG Vaccine , Mycobacterium bovis , Genomics , Iran , Mycobacterium bovis/genetics , Sequence Analysis, DNA
8.
Iran J Public Health ; 50(7): 1454-1462, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34568185

ABSTRACT

BACKGROUND: Bordetella pertussis, a highly contagious respiratory. Notably, the resurgence of pertussis has recently been associated with the lacking production of vaccine virulence factors. This study aimed to screen pertactin (Prn) and filamentous hemagglutinin (Fha) production in Iran with 50 years' whole cell vaccine (WCV) immunization program. METHODS: Overall, 130 B. pertussis isolates collected from Pertussis Reference Laboratory of Iran during 2005-2018. Real-time PCR was performed by targeting IS481, ptxP, IS1001 and IS1002 for species confirmation of B. pertussis. Western-blot was used to evaluate the expression of virulence factors (pertactin and filamentous hemagglutinin). RESULTS: All tested B. pertussis isolates expressed Prn and all except two isolates expressed Fha. We have sequenced genomes of these strains and identified differences compared with genome reference B. pertussis Tohama I. CONCLUSION: Many countries reporting Prn and Fha-deficiency due to acellular vaccine (ACV) pressure. Our results demonstrate in a country with WCV history, Fha-deficient isolates may rise independently. However, Prn-deficient isolates are more under the ACV pressure in B. pertussis isolates. Continues surveillance will provide a better understanding of the effect of WCV on the evolution of the pathogen deficiency.

9.
Cell Biosci ; 11(1): 164, 2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34420513

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has made a serious public health and economic crisis worldwide which united global efforts to develop rapid, precise, and cost-efficient diagnostics, vaccines, and therapeutics. Numerous multi-disciplinary studies and techniques have been designed to investigate and develop various approaches to help frontline health workers, policymakers, and populations to overcome the disease. While these techniques have been reviewed within individual disciplines, it is now timely to provide a cross-disciplinary overview of novel diagnostic and therapeutic approaches summarizing complementary efforts across multiple fields of research and technology. Accordingly, we reviewed and summarized various advanced novel approaches used for diagnosis and treatment of COVID-19 to help researchers across diverse disciplines on their prioritization of resources for research and development and to give them better a picture of the latest techniques. These include artificial intelligence, nano-based, CRISPR-based, and mass spectrometry technologies as well as neutralizing factors and traditional medicines. We also reviewed new approaches for vaccine development and developed a dashboard to provide frequent updates on the current and future approved vaccines.

10.
Infect Genet Evol ; 93: 104970, 2021 09.
Article in English | MEDLINE | ID: mdl-34171476

ABSTRACT

Here we investigated nationwide clinical Bordetella pertussis isolated during 2005-2017 from different provinces of Iran, a country with more than 50 years whole cell vaccine immunisation history. Our results revealed the ongoing increase in the population of ptxP3/fim3-2 B. pertussis isolates in different provinces which were differentiated into nine clades. The largest clade (clade 8) which was previously found to be prevalent in Tehran was also prevalent across the country and clade 5 with ptxP3/prn9 genotype has also increased in frequency (14% of all ptxP3 isolates) in recent years. Furthermore, we detected the first ptxP3 B. pertussis isolates that does not express filamentous hemagglutinin (FhaB) as one of the major antigens of the pathogen and a key component of the acellular pertussis vaccine.


Subject(s)
Bordetella pertussis/genetics , Evolution, Molecular , Genome, Bacterial , Hemagglutinins/immunology , Pertussis Vaccine/genetics , Bordetella pertussis/classification , Iran , Pertussis Vaccine/immunology
11.
Iran J Microbiol ; 12(1): 1-10, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32322373

ABSTRACT

BACKGROUND AND OBJECTIVES: The re-emergence of pertussis still is being reported all over the world. Pathogen adaptation and antigenic divergence of circulating isolates from vaccine strains are the main reasons of infection resurgence. Waning immunity is also an important factor contributing to resurgence of pertussis. MATERIALS AND METHODS: The genetic diversity and evolutionary characteristics of circulating Iranian isolates of Bordetella pertussis during February 2015 to October 2018 was investigated by pulsed-field gel electrophoresis (PFGE) and subsequently ptxA, ptxP and fim3 alleles were characterized. The next generation genome sequencing was then used to compare the genomics of ptxP1 and ptxP3 of selected isolates from PFGE dendrogram. RESULTS: PFGE differentiated 62 clinical isolates and vaccine and reference strains into 19 PFGE profiles, indicating the higher level of heterogeneity in the population during 2015-2018. The predominant B. pertussis genotype harbored pertussis toxin promoter allele, ptxP3 and the expansion of ptxA1 isolates, were also observed in our population. CONCLUSION: No changes in allelic profile of predominant clone in recent years was observed but antigenic divergence between recently circulating isolates and the vaccine strain has been progressed and significantly was higher than previous studies. The comparative genomic analysis of the ptxP3 and ptxP1 isolates indicate that changes in ptxP3 genome structure including 32 unique SNPs and three unique indels may have contributed to the expansion of the ptxP3 clone. We compared ptxP3 and ptxP1 isolates in pathogenicity-associated genes and found five of them were specific for the ptxP3 isolates. The polymorphisms in pathogenicity-associated genes suggest structural adaptations for these virulence factors.

12.
Emerg Microbes Infect ; 8(1): 1416-1427, 2019.
Article in English | MEDLINE | ID: mdl-31543006

ABSTRACT

Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.


Subject(s)
Bordetella pertussis/genetics , Evolution, Molecular , Genome, Bacterial , Pertussis Vaccine/administration & dosage , Whooping Cough/epidemiology , Whooping Cough/prevention & control , Alleles , Bacterial Outer Membrane Proteins , Bordetella pertussis/classification , Bordetella pertussis/isolation & purification , Genomics , Genotype , Geography , Humans , Infant , Iran/epidemiology , Phylogeny , Polymorphism, Single Nucleotide , Virulence Factors, Bordetella , Whole Genome Sequencing , Whooping Cough/microbiology
13.
Vaccine ; 34(34): 3967-71, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27346304

ABSTRACT

Molecular epidemiological data indicates that the resurgence of pertussis (whooping cough) in populations with high vaccine coverage is associated with genomic adaptation of Bordetella pertussis, the causative agent of the disease, to vaccine selection pressure. We have previously shown that in the period after the introduction of acellular pertussis vaccine (ACV), the majority of circulating strains in Australia switched to single nucleotide polymorphism (SNP) cluster I (carrying ptxP3/prn2), replacing SNP cluster II (carrying ptxP1/prn3). In this study, we carried out an in vivo competition assay using a mouse model infected with SNP cluster I and II B. pertussis strains from Australia. We found that the SNP cluster I strain colonised better than the SNP cluster II strain, in both naïve and immunised mice, suggesting that SNP cluster I strains had better fitness regardless of immunisation status of the host, consistent with SNP cluster I strains replacing SNP cluster II. Nevertheless, we found that ACV enhanced clearance of both SNP cluster I and II strains from the mouse respiratory tract.


Subject(s)
Bordetella pertussis/genetics , Evolution, Molecular , Genetic Fitness , Whooping Cough/microbiology , Animals , Australia , Coinfection/microbiology , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Pertussis Vaccine/administration & dosage , Polymorphism, Single Nucleotide , Respiratory System/microbiology , Selection, Genetic , Whooping Cough/prevention & control
14.
J Infect ; 72(4): 468-77, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826518

ABSTRACT

OBJECTIVES: Despite high pertussis vaccination coverage, Australia experienced a prolonged epidemic in 2008-2012. The predominant Bordetella pertussis genotype harboured pertussis toxin promoter allele, ptxP3, and pertactin gene allele, prn2. The emergence and expansion of prn non-expressing isolates (Prn negative), were also observed. We aimed to investigate the microevolution and genomic diversity of epidemic B. pertussis isolates. METHODS: We sequenced 22 B. pertussis isolates collected in 2008-2012 from two states of Australia which are geographically widely separated. Ten of the 22 were Prn negative isolates with three different modes of silencing of prn (prn::IS481F, prn::IS481R and prn::IS1002). Five pre-epidemic isolates were also sequenced for comparison. RESULTS: Five single nucleotide polymorphisms were common in the epidemic isolates and differentiated them from pre-epidemic isolates. The Australian epidemic isolates can be divided into five lineages (EL1-EL5) with EL1 containing only Prn negative isolates. Comparison with global isolates showed that three lineages remained geographically and temporally distinct whereas two lineages mixed with isolates from 2012 UK outbreak. CONCLUSION: Our results suggest significant diversification and the microevolution of B. pertussis within the 2008-2012 Australian epidemic.


Subject(s)
Bordetella pertussis/genetics , Epidemics/statistics & numerical data , Whooping Cough/epidemiology , Whooping Cough/microbiology , Australia/epidemiology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Humans , Molecular Epidemiology , Phylogeny , Polymorphism, Single Nucleotide/genetics
15.
Vaccine ; 33(46): 6277-81, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26432908

ABSTRACT

Whooping cough or pertussis is a highly infectious respiratory disease in humans caused by Bordetella pertussis. The use of acellular vaccines (ACV) has been associated with the recent resurgence of pertussis in developed countries including Australia despite high vaccination coverage where B. pertussis strains that do not express pertactin (Prn), a key antigenic component of the ACV, have emerged and become prevalent. In this study, we used an in vivo competition assay in mice immunised with ACV and in naïve (control) mice to compare the proportion of colonisation with recent clinical Prn positive and Prn negative B. pertussis strains from Australia. The Prn negative strain colonised the respiratory tract more effectively than the Prn positive strain in immunised mice, out-competing the Prn positive strain by day 3 of infection. However, in control mice, the Prn positive strain out-competed the Prn negative strain. Our findings of greater ability of Prn negative strains to colonise ACV-immunised mice are consistent with reports of selective advantage for these strains in ACV-immunised humans.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bordetella pertussis/growth & development , Bordetella pertussis/immunology , Pertussis Vaccine/immunology , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/immunology , Whooping Cough/microbiology , Whooping Cough/prevention & control , Animals , Australia , Bordetella pertussis/isolation & purification , Coinfection/immunology , Coinfection/microbiology , Coinfection/prevention & control , Disease Models, Animal , Female , Humans , Mice, Inbred BALB C , Pertussis Vaccine/administration & dosage , Selection, Genetic , Whooping Cough/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...